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Linear analytical theory of a transformation 
from a single crystal A to another single 
crystal B 
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An isothermal phase transformation from a single crystal A to another single crystal B is theor- 
etically investigated along preferred lines (Rosiwal's lines). It is supposed that the nuclei of 
the B-phase are Poisson distributed within the single crystal A. From these nuclei the B-grains 
grow instantaneously, equioriented, and in the form of cuboids with three different growth 
rates Vx, vy and vz. If the B-grains touch, growth stops and they form a larger B-grain.,We 
derive for this microstructure, at time t along the three Rosiwal's lines (X-line, Y-line, Z-line), 
the distribution densities of the lengths of the A-phases as well as of the B-phases using the 
theory of probability. The two-dimensional model (z = 0) is considered in detail, idealizing the 
transformation within a thin layer. 

1. I n t r o d u c t i o n  
1.1 Motivat ion 
The same cut of a transforming layer, from the 
homeotropic nematic phase to the smectic B-phase, is 
shown at two different times in Figs la and b. The 
layer with a thickness of about 10#m lies between 
slides representing approximately a two-dimensional 
microstructurc. The equJoriented B-grains grow 
almost exclusively in one direction. (Further details 
are given in [1].) Investigations of other substances 
have shown a growth of rectangular grains in both 
directions. 

These experimental investigations lead to the prob- 
lem of the theoretical characterization of the micro- 
structure of an isothermic and anisotropic transform- 
ing one-componentic layer at time t, containing the 
passing and the forming phases. In order to solve this 
problem we have created a two-dimensional model of 
idealized nucleation and crystal growth defining the 
microstructure at each time t during transformation in 
a statistically complete form. 

1.2. Two-dimensional model (2-D model) 
The microstructure at time t is defined by the follow- 
ing assumptions: 

1. The single crystal A, at time t = 0, occupies 
only two dimensions and is infinitely extended. (This 
assumption simplifies the mathematical treatment.) 

2. Nuclei of the B-phase are Poisson distributed 
(independently and randomly) within the A-phase at 
time t = 0, with a mean number of n nuclei per area 
unit. 

3. All grains of the B-phase instantaneously start to 
grow at time t = 0 from their nuclei in the form of 
identical, parallel orientated rectangles (see Fig. 2). 
The linear growth rates are v~ and vy. 

4. If two B-grains touch, they coalesce to form a 
larger, single crystalline B-grain (which contains no 
B -B  grain boundary). 

5. During phase transformation no new nuclei are 
formed and no shrinking occurs. 

The following values in generalized units are used 
for graphical illustration of the transformation: 
n = 1; vx = l; vy = 0.5. These chosen values arc 
used in Figs 4, 5, 7, 8 and 10. We additionally used 
t = 0.5 to illustrate a fixed microstructure; this 
chosen value is used in Figs 2, 3, 6, 9 and 11. An 
expansion from two to three dimensions is given in 
Sections 4, 5 and 6. 

1.3. Linear analytical characterization of the 
microstructure at time t 

Microstructures are characterized in the field of quan- 
titative microscopy [2-5]. Here the linear analysis is a 
common method, characterizing the microstructurc in 
one dimension: a line (Rosiwal's line) is drawn parallel 
to a preferred direction, e.g. the X-line parallel to the 
greatest growth rate, vx. Along this X-line alternating 
A- and B-phases occur with their different lengths a 
and b, respectively (see Figs 3a and c). Therefore the 
following quantities and functions exist along the X- 
line at time t: 

mean number, N, of intervals of A-phases as well as 
of B-phases per unit length; 

length fraction, F, of the B-phase; 
distribution density h(a) of the lengths a of the 

A-phase; 
distribution density i(b) of the lengths b of the 

B-phase. 

As shown in the field of quantitative microscopy, each 
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Figure I (a) Miorophotography of a layer between crossed polarizers. The Layer consists of a nearly homeotropic phase A, containing ten 
parallel oriented rods like grains of phase B. (b) The same cut as Fig. la, but a little later. The width of the photographs equals 0.2ram in 
the sample. 

arbitrary infinite line parallel to the X-line used yields 
the same statistical results. 

1.4. Aims 
In the following sections N(t), F(t), h(a; t), and i(b; t) of 
the microstructure at time t are derived by used of the 
theory of probability. The 1-D model has been com- 
pletely derived in a previous work [6], and further 2-D 
and 3-D models have been investigated in [7]. 

2. Microst ructure  of the 2-D model 
along the X- l ine at t ime t 

2.1. Virtual nuclei 
We consider a strip along the X-line, limited by paral- 
lel straight lines with a distance vy t from the X-line, as 
shown in Fig. 3a. At time t all nuclei outside the 
strip cannot, on principle, reach the X-line with their 
grains. These nuclei are called "no potential nuclei". 
All nuclei within the strip at time t can (but do not 
have to) reach the X-line with their grains. These 
nuclei are called "potential nuclei". 

Figure 2 Two-dimensional microstructure. The points represent the 
nuclei. The shaded areas represent the single crystalline B-phases. v~ 
and vy are the linear growth rates. We choose n = 1, vx --- 1, 
vy = 0.5, t = 0.5. 
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The rectangular projection of all potential nuclei 
upon the X-line yields the "virtual nuclei", as shown 
in Fig. 3b. As supposed, all nuclei within the 2-D 
model are Poisson distributed, and consequently the 
potential nuclei (within the strip) are also Poisson 
distributed. Therefore their x-coordinates have to be 
Poisson distrubuted (randomly, independently) along 
the X-line, which means that the virtual nuclei are also 
Poisson distributed along the X-line. 

The mean number of virtual nuclei per length unit 
along the X-line at time t, nx, follows from 

nx = 2vytn. (1) 

In the theory of probability [8], for Poisson distributed 
points along a line with a mean number n~ of points 
per length unit, the distance x between two neighbour- 
ing points is exponentially distributed with a distri- 
bution density 

y ( x )  = n~ exp (-n~x). (2) 

It is true that 

I; 0 =oJ(X ) dx = 1 (normalization), (3) 

and that 

=0xj(x)  dx = 2 = 1/n,, 

(mean distance between neighbouring points). (4) 

Therefore the distribution density j of the distance x 
between neighbouring virtual nuclei along the X-line 
at time t is given by 

0 f o r x  < 0 
j(x;  t) = (5) 

2 n v y t e x p ( - -  2nvytx)  f o r x  >i 0 

Fig. 3b shows some x-distances along the X-line. 

2.2. Derivation of N(t) 
The length of each B-grain grown unhindered along 
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Figure 3 (a) The same mierostructure as in 
Fig. 2, containing Rosiwal's Line (X-line) 
and its strip with a width of 2vyt. The 
points within the strip represent the poten- 
tial nuclei. A-phase and B-phase alternate 
along the X-line. 0a) X-line containing vir- 
tual nuclei. The x-distances are the lengths 
between two neighbouring virtual nuclei. 
(c) X-line containing A-phases with dif- 
ferent lengths a and B-phases (B-lengths) 
with different lengths b. The B-phase with 
a length b (>b0) contains four virtual 
nuclei. The B-phase With the length b0 con- 
tains only one virtual nucleus. 

the X-line at time t amounts  to 

bo = 2vxt, (6) 

where b0 is the shortest length of  the B-phases at time 
t on the X-line (see Fig. 3c). 

By use of  Figs 3a -c ,  we see that  each distance x 
between neighbouring virtual nuclei with x < b0 has 
transformed. Therefore it represents a par t  o f  the 
length b of  a B-phase. Distance x >t b0 contains 
B-phase on its left as well as on its right side, each with 
a length of  Vx t. Fur thermore  this x-interval contains in 
its centre the A-phase with a length of  

a = x - b0, (7) 

being symmetrically arranged. 
The fraction, W, of  these A-intervals with respect to 

all x-intervals on the ,Y-line is given by 

W(t)  = ~:=boj(x) dx  = exp ( -nxbo)  

= exp ( - 4 n v x v y t  2) (8) 

Therefore the mean number  of-A-intervals per length 

unit along the X-line, N, is given by 

N(t)  = nx W(t) = 2nvyt exp ( -  4nvx% t 2) (9) 

Fig. 4 shows the graph N(t)  for the example given 
above. 

At  t = 0, phase-A only exists and therefore N = 0. 
The shape of  N(t)  is caused by two effects: the arrival 
o f  new grains on the X-line dominates before the 
maximum of  N is reached, and therefore the number  
of  N increases. Beyond the maximum the coalescence 
of  grains dominate and therefore the number  of  A- 
intervals decreases. Finally only B-phase exists, and 
we have N = 0. The mean number  of  B-phases per 
unit length also equals N(t). 

The differentiation of  N(t)  with respect to time t 
gives 

N(t)  = 2nvy exp (-4nVxVyt2)(1 - 8nVxvyt 2) (10) 

Fig. 5 shows N(t); N ( 0  = 0 is reached at 

t = (8nVxVy) -1/2 = 0.5. (11) 

At  this time we obtain the maximum of  N(t)  in Fig. 4, 

N(t) 
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Figure 4 N(t) represents the number of A-phases (or B-phases) per 
unit length along the X-line and along the Y-line. For the latter see 
Section 3. 
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Figure 5 N(t) represents the derivation of N with respect to t along 
the X-Line and along the Y-line. 
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Figure 6 Distribution density h of the length a along the X-line and 
along the Y-line at t = 0.5, F = 0.39. 

2.3. Derivation of h(a) 
From Equations 2, 7, 8, 1 and 6 we obtain the nor- 
malized distribution density h of  the length a of the 
A-phases at time t: 

n~ exp [ -nx (a  + bo)] 
h(a; t) = 

w(t) 

= 2nvyt exp ( - 2 % t  a) (12) 

Fig. 6 shows h(a; 0.5). The mean value a of the lengths 
a at t is given by 

1 
a = (13) 

(2nvj )  

Since h(a; t) = j (x; t), we have ~ = 5. Each snapshot 
of the microstructure yields an exponential distribu- 
tion of the a-lengths. ~ decreases proportionally to lit. 

2 . 4 .  Avrami relat ion 
The length fraction, M, of phase-A along the X-fine at 
time t, equals the part M of  A-phase per unit length. 
It is given by 

M(t) = ~ N(t). (14) 

With Equations 8 and 9 we obtain 

M(t) = W(t) (15) 

The complementary part of  B-phase per unit length 
along the X-fine at time t, F, meaning the length 

fraction of the B-phase, is given by 

F ( t )  = 1 - M(t) = 1 - exp (--4nvxvyfl) (16) 

Fig. 7 shows F(t) with its point of inflection at 
t = 0.5. Differentiation yields 

~'(t) = --A;/(t) = -- I~r(t) 

= 8nv~vyt exp (--4nv~vyt 2) = 4v~ N(t). 

(17) 

By quantitative microscopy for the B-phase, it is 
proved that the length fraction along the X-line equals 
the areal fraction within the x - y  plane. Therefore the 
F(t) in Equation 16 represents also the "fraction 
transformed" in the two-dimensional microstructure 
under consideration. Equation 16 is often called the 
"Avrami relation". The proportionality of f ( t )  and 
N(t) from Equation 17 is physically understandable 
because on the one hand the interphase interfaces are 
the centres of growth along the X-fine, and on the 
other hand the mean number of interphase interfaces 
along the X-fine amounts to 2N(t). 

2.5. Class 1 B-lengths 
A B-length on the X-line containing only one virtual 
nucleus is called a "class 1 B-length". Its length b 
amounts to bo = 2vxt at time t along the X-fine. 
Therefore the (normalized) distribution density il (b; t) 
of the length b is a delta function: 

il(b; O = 6(b - b0) = a(b - 2vxt).  (18)  

The mean number of class 1 B-lengths per unit 
length along the X-line at time t, NI, is derived as 
follows. The probability of  obtaining an x-interval 
with x > b0 amounts to W, as given by Equation 8. If  
two such x-intervais are neighbours, we have a class 1 
B-length. This event has the probability W - W ,  
because the two x-lengths are independent of each 
other. Therefore the mean number of class 1 B-lengths 
amounts to 

N,(t) = nxWZ(t). (19) 

Fig. 8 shows NI (t). The fraction 311 (t)/N(t) amounts 
to W(t) (see Fig. 7). 

0.4- 

1.0- 

0.C 

I W(t) F(t) 

I T  , , 

0.0 1•0 t Z'.0 

Figure 7 Fraction transformed, F(t), and fraction of A-phase, W(t). 
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Figure 8 Ni is the mean number of class 1 B-lengths per unit length 
along the X-line. N2 is the mean number of class 2 B-lengths per unit 
length along the X-line• N is the sum of N l and N2. 
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Figure 9 Distribution density i2(b; t) of the length b of the class 2 
B-lengths at time t = 0.5 along the X-line and along the Y-line. 
F = 0.39. 

2.6. Class 2 B-lengths 
A B-length on the X-line containing two or more 
virtual nuclei is called a "class 2 B-length". Its length 
b is a random variable and its value is greater than b0. 
The normalized distribution density i2(b, t) of  the 
lengths b of  the class 2 B-lengths is defined by 

n x 
i2(b; t) = 

[exp (n~bo) - I] 

0 f o r O <  b ~< bo 

x 1 forbo < b ~< b o ' 2  

g(b; t, K) forKbo < b <~ bo(K + 1) 

(20) 

with K = 2, 3, 4 , . .  and with 

K - - I  

g(b; t, K) = 1 + ~ ( - n f f  exp (- jnxbo) 
j = l  

x {[b - ( j  + l)bff / j!  

+ [b - ( j  + 1)bo]J-'/[n~(j - 1)!]} 

(21) 
and with the abbreviations 

bo = 2v~t and nx = 2nvyt. 

The derivation is a bit lengthy and therefore it will be 
given in a later paper [9]. Fig. 9 shows i2(b; 0.5) along 
the X-line. The smallest length of  a class 2 B-length 
amounts to b0 ( =  1). The discontinuity of  i2(b; 0.5) at 
b = 2 is caused by the abrupt vanishing of  class 2 
B-lengths with only two virtual nuclei. The salient 
point of  i2 at b = 3 is caused by vanishing of  class 2 
B-lengths containing three virtual nuclei only. For  
b > 3 the/2 is continuous and differentiable. A similar 
discussion has been given in [6]. The mean number of  
class 2 B-lengths per unit length along the X-line at 
time t, N,,  follows from 

N2 = N -  Ni = n ~ W - -  n~W 2 

= 2nVyt exp ( -4nv~vyf l )  [1 -- exp (--4nv~%fl)]. 

(22) 

Fig. 8 shows N2(t). Nt(t) and N2(t) intersect at 
F = 0.5, where F(t) and W(t) in Fig. 7 also intersect. 
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Figure 10 Mean length G(t) of the B-phases along the X- and along 
the Y-line. 

The fraction N2(t)/N(t) amounts to F(t) (see Fig. 7). 
The mean length/72 (t) of  the class 2 B-lengths at time 
t follows from 

G2(t) = ( F -  N, bo)/N2. (23) 

2.7. Density distribution i(b; t) 
The length unit on the X-line at time t contains N 
lengths of  the A- as well as the B-phase. Therefore we 
have 

N ( ~ +  5) = 1. (24) 

From this equation we compute the mean length 5 of  
all B-lengths: 

G = 1 / N -  ~ = (2n%t)- '  

× [exp ( + 4 n v ~ % f l ) -  1]. (25) 

Fig. 10 shows 5(0 with 5(0) = 0 and/7(00) = oo. The 
normalized density distribution i(b; 0 of  the length b 
of  all B-lengths along the X-line at time t is given by 
use of  Equations 18 and 20 as 

t 
0 for b < b0 

i(b; t) = i~ (b; t) W for b = b 0 (26) 

[ i2 (b ; t ) ( l  - /40 f o r b  > b0. 

3. M i c r o s t r u c t u r e  of  the  2 - D  model  
a long  the  Y- l ine  at  t i m e  t 

3.1. Strip parallel to the Y-line 
Fig. 11 shows Rosiwal's line parallel to the Y- 
direction through the microstructure seen above 
in Fig. 2. Now the strip shows a width of  2v~ t, con- 
taining all potential nuclei with respect to the Y-line. 
The mean number of  virtual nuclei per unit length at 
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the space (3-D) model in the following way. The nuclei 
are Poisson distributed within the space with a mean 
number of n nuclei per unit volume. Each crystal 
grows in three directions with the rates vx, vy and vz. 
The form of each unhindered growing B-grain at time 
t is a cuboid with the three lengths 2v~ t, 2vy t, 2% t. As 
an illustration we also use v, = 0.2. 

4.2. Potential nuclei 
Now the potential nuclei are contained within a tube. 
The central line of the tube represents the X-line, as 
shown in Fig. 12. This tube has rectangular cross- 
section with an area amounting to 2% t 2v, t. 

The virtual nuclei are again Poisson distributed. 
The mean number of virtual nuclei per unit length 
along the X-line at time t is given by 

n~ = 4 n v y v j  2 (29) 

Figure I1 The microstructure from Fig. 2, containing a Y-line and 
its strip with a width of 2vxt = 1. 

time t along the Y-line, ny, amounts to 

ny = 2 n v j .  (27) 

The length b0 of the grains of class 1 amounts to 

b o = 2yr .  (28) 

3.2. Resul t s  
All derivations and results given in Section 2 for the 
linear analysis along the X-line are valid for the linear 
analysis along the Y-line, if we interchange vx and vy. 

The following quantities and their derivations 
with respect to time t are invariant after inter- 
change: W(t) (Equation 8), F(t) (Equation 16), M(t)  
(Equation 16). 

The following quantities are altered by interchange 
of  v~ and v / b e ,  Yc, j (x)  (Fig. 6), N(t) (Fig. 4), /q(t) 
(Fig. 5), h(a) (Fig. 6), a, i~(b), N,( t )  (Fig. 8), i2(b) 
(Fig. 9), N2(t) (Fig. 8),/7 (Fig. 10), i(b). 

4. Theory of linear analysis of the 3-D 
model 

4.1.3-D model 
We expand the 2-D model, given in Section 1.2, for 

4.3. Quan t i t i e s  a long  the  X - l i n e  

The quantities of the 3-D model are derived in the 
same way as given in Section 2 for the 2-D model, and 
are listed below. 

be(t) = 2v~t 

:c(O = 1/(4nvyvj  2) 

j (x)  = 4nvyv~fl" exp (--4nvyv~flx)  

W(t) = exp ( -  8nv~vyv~P) 

N(t)  = 4nvyvJ  2 exp ( - S n v x v y v j  3) 

)q(t) = 8nvyv, t exp ( -8nvxvy%t  3) 

x (1 - 12nV~VyVj 3) 

h(a) = 4nv~v~fl exp ( - 4 n v y v J 2 a )  

= 1/(4nv, v J  2) 

F(t) = 1 - exp (-8nv~vyvzt 3) 

il(b) = 6(b -- 2Vxt ) 

Nl(t) = 4nvyv, t 2 exp (-- 16nv~vyv, t 3) 

N2(t) = 4nvyvJ  2 exp ( -  8 n v x v r v j  3) 

x [1 - exp ( -8nv~vyv. j3)]  

i2(b) = e x p ( - ~ t  3 ) -  1 x 

g(b; t, K)  

with K = 2, 3, 4 , . . .  and with 

g(b; t, K) = 

f o r 0  < b <<, 2 v j  

for 2Vxt < b <~ 2 x 2vxt 

for K 2 v J  < b <~ (K + 1)2vj  

1 + ~ ( - - 4 n v y v j 2 ) / e x p  ( - - j 8 n v x v y v j  3) [b - ( j  + 1)2v~t] j 
~=, j! 

v, - (: + 
M I- -- ~ _  

4nvyv, t 2 ( j  -- 1)! J 
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exp (Snv,~vyvJ 3) - 1 
5(0 = 4nvyvzt 2 {o 
i(b) = exp ( -8nv~vyv. t  3) 6(b - 2v~t) 

[1 - exp (-8nv~vyv.t~)] i2(b) 

for b < 2vxt 

for b = 2vxt 

for b > 2v~t 



Figure 12 Tube with the cross-section 0.5 x 0.2. The central line 
represents the X-line through the 3-D model. 
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Figure 13 Mean area ofinterphase interfaces per unit volume, Sv(t). 

4.4.  Quan t i t i e s  a l o n g  t he  Y-line a n d  t he  
Z- l ine  

The results along the Y-line are obtained if we replace 
v= by % and vy by v= in Section 4.3. The results along 
the Z-line are obtained if we replace v, by v, and v, by 
' V  x . 

The quantities W(t), M(t) ,  F(t), as well as their 
derivations with respect to time t, stay invariant after 
this interchange. They are also measured in the field of  
quantitative microscopy by the point analysis. 

4.5.  Sv a n d  i n t e r p h a s e  interfacial  e n e r g y  
The mean number of  A - B  interfaces per unit length 
along the X-line at time t amounts to 2N(t),  because 
there are N B-phases each with two interfaces. Conse- 
quently the mean area of  y - z  interphase interfaces 
within a unit cube is also given by 2N(t).  We use 
indices in order to distinguish the three main direc- 
tions. The mean area of  interphase interface per unit 
volume,Sv, follows from 

Sv = 2(N, + Ny + N,) 

= 8nt2(vvv~ + v,v~ + vxvy) exp ( - -8nv~vyv,  t 3) 

(30) 

Fig. 13 shows Sv(O with n = 1; v~ = 1; vy = 0.5; 
vz = 0.2. The maximum of  Sv(t) is reached at 
tm,x = 0.941 . . . .  At the same time /~ reaches its 
maximum. 

d~y may be the specific interphase interfacial energy 
of  an xy-boundary.  Analogously we define dy~ and d=. 
The mean interphase interfacial energy per unit vol- 
ume of  the 3-D model at time t, E(t),  is given by 

E(t)  = 8nt2(d~yvxvy + dy, vyV~ + d,~v,v~) 

x exp ( - S n v ~ v e v ,  t 3) (31) 

5. Theory of l inear analysis of the 3 -D  
surface model  

5 . 1 . 3 - D  surface model and potential nuclei 
Experimental linear analysis is often done on the sur- 
face of  the sample. The usual model is the "3-D sur- 
face model",  defined to be a 3-D model within the 
infinite half-space for all x and all y values, but only 
for z ~< 0. Now we investigate the microstructure of  

the xy-plane along the X-line at time t. As shown in 
Fig. 14, the potential nuclei are situated within a half 
tube with the cross-section of  2% tv~ t. The mean num- 
ber of  virtual nuclei per unit length on the X-line at 
time t, n~, amounts to 

n x = 2nvyv~t 2 = 1/2. (32) 

5.2. Quantities along the X- l ine 
The quantifies of  the 3-D surface model are derived in 
the same way as given in Section 2 for the 2-D model, 
and are listed below. 

bo(t) = 2vxt 

Yc(O = 1/(2nvyv, t 2) 

j (x)  = 2nvyv, t 2 exp ( -  2nvyvzt2x) 

W(t) = exp ( - 4 n v x v y v z t  3) 

N(t)  = 2nvyvz t 2 exp ( -  4nvxvrv ~?) 

IV(t) = 4nVyv, t exp ( -4nv=vyv~t  3) 

x (1 - 6nv~%vzt 3) 

h(a) = 2nVyvzt 2 exp ( -  2nvyv~t2a) 

a = 1 / ( 2 n v y v j  

F(t) = 1 - exp ( -4nv=vyv ,  t 3) 

ij(b) = 6(b - 2vxt) 

/ / / / 
. .  / \? 

,,/ ' 
2rye : 

Figure 14 Half tube with the cross-section 0.5 x O.L The X-line is 
arranged in the surface x-y plane. 
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Figure 15 N(t) along the X-line for the 3-D model and for the 3-D 
surface model. 
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Figure 16 F(t) for the 3-D model and for the 3-D surface model. 

0.2 

N(t) 1 

Nl(t) = 2 n % v ~  exp (--8nv~%v~P) 

N2(t) = 2n%v~t 2 exp ( -4nv~%v~t  ~) 

x [1 - exp (-4nv~vev~t3)] 

i 2 (b )  = exp (_4nv~vyv ,  t3 ) _ 1 x 
g(b; 

with K = 2, 3, 4 , . . .  and with 

t, K) 

for0 < b <<. 2v~t 

for 2v~t < b <~ 2 x 2v~t 

for K2v~t < b <~ .(K + l)2v~t 

K-1 
g(b; t, K) = 1 + ~ ( -  2nvyv~t2)i exp ( - j4nvxvyv ,  t 3) 

J~l 

- + 1)2vxt] j [b - ( j  + 1)2v,  t lU-D~ 
× [b (Jjt + 2 .v ,~zeG--~ 3 

5(0 = 

i(b) = 

exp (4nv~vyvd 3) - 1 
2n%, vz t 2 

t ° exp ( -4nv~vyvz t  3) 6(b -" 2v~O 

k[l  - exp (-4nvx%vzt3)] i2(b) 

for b < 2vxt 

for b = 2vxt 

for b > 2vxt 

A comparison between the 3-D surface model and 
the 3-D model is given in dependence on time t 
in Fig. 15 for the mean number of A-phases (or 
B-phases) per unit length along the X-line, N(t), and 
in Fig. 16 for the fraction transformed, F(t). 

5.3. Quantities along the Y-line and the 
Z-line 

The interchange of the growth rates vx, %, vz, as given 
in Section 4.4., are used in Section 5.2. to obtain the 
results along the Y-line and along the Z-line. 

6 . 3 - D  mode l  w i t h  g r o w t h  rates  
d e p e n d i n g  on t i m e  

We will consider the 3-D model from Section 4.1., but 
now with vx(t), %(0, and vz(t). In this model each 
unhindered grown B-grain is again a cuboid during 
the whole transformation, but the proportion of its 
three lengths depends on time t. This dependence may 
be caused by different stresses along different oriented 

interphase interfaces, which react to the rates of 
growth. With the abbreviation 

I: V~(t) = vi(Odt fo r i  -- x , y , z ,  (33) 
=0 

we obtain for the mean number of virtual nuclei per 
unit length along the X-line at time t 

nx -- 2Vy2V~n = 4nVrV~. (34) 

The length of each unhindered grown B-grain along 
the X-line at time t is given by 

b 0 = 2V~. (35) 

With the derivations in Sections 2 and 4 we obtain e.g. 

W(t) = exp ( -  8nV~ Vy V~) (36) 

and 

N(t) = 4nVyV~exp (-8nVxVyV~) (37) 
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After derivation with respect to t we have, however, 

g( t)  = 4n exp ( -  8nV~ Vy V,)[vy Vy + Vyvz 

- 8nv z (vxz, v,  + + 

(38) 

Section 4.3. and Equations 30 and 31 are true for the 
present case if we substitute vxt ~ ~ ;  %t ~ ~;  
v: t ~ ~ .  (~r is excepted and given in Equation 40.) 
After doing so, the quantities along the Y-line follow 
by replacement of ~ by ~ and ~ by ~ .  (In N(t) we 
have additionally to substitute vx ~ % and % ~ vx.) 
The quantities along the Z-line follow by replacement 
of V~ by V~ and V, by V, from the quantities above. (In 
N(t) we have additionally to substitute v, ~ v, and 
v~ - ,  v~.) 

Acknowledgements 
We thank Dipl.-Phys. G. Schilling for the two micro- 
photographs. The investigations were financially sup- 
ported by the Land Nordrhein-Westfalen, FRG. 

References 
1. G. SCHILLING, Dipl.-Arbeit (Physik), Universit~t Diissel- 

dorf, 1984. 
2. S. A. SALTYKOV, "Stereometdsche Analyse" (VEB Deut- 

seher Verlag ffir Grundstoffmdustrie, Leipzig, 1974). 
3. R. T. DE HOFF and F. N. RI-IINES, "Quantitative Micro- 

scopy" (McGraw-Hill, New York; 1968). 
4. E. E. UNDERWOOD, "Quantitative Stereology" (Addison 

Wesley, Reading, Massachusetts, 1970). 
5. H. FREUD, "Handbueh der Mikroskopie in der Teehnik", 

Band III, Teil 2 (Umschau-Verlag, Frankfurt/Main, 1969). 
6. G. E. W. SCI-IULZE, J. Crystal Growth 62 (1983) 7. 
7. Idem, Acta Metall. 33 (2) (1985) 239. 
8. A. RENYI, "Wahrseheinliehkeitsrechmmg" (Deutscher Ver- 

lag der Wissensehaften, Berlin, 1977). 
9. G. E. W. SCHULZE and H. KLINGER, unpublished 

result. 

Received 14 November 1985 
and accepted 10 January 1986 

45 


